Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals[1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
. Example 2:
Given[1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
. This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
思路:
是的一个延伸问题,先看看怎么Merge
Given a collection of intervals, merge all overlapping intervals.
For example,
Given[1,3],[2,6],[8,10],[15,18]
,return [1,6],[8,10],[15,18]
. 1 vectormerge(vector &intervals) { 2 if(intervals.size() <= 1) 3 return intervals; 4 5 vector vres; 6 sort(intervals.begin(), intervals.end(), intvalcomp);//先对interval排序 7 Interval tmp(intervals[0]); 8 for(Interval it:intervals){ 9 if(tmp.start == it.start){10 tmp.end = it.end;11 }else if(tmp.end >= it.start){ //intervals有序,必然有tmp.start < it->start12 if(tmp.end < it.end)//直接无视后者{[1,4],[2,3]}13 tmp.end = it.end;//直接吞并后者{[1,3],[2,4]}14 }else{15 vres.push_back(tmp);//不相交16 tmp = it;17 }18 }19 vres.push_back(tmp);//漏掉这句会fail{[1,4],[1,4]}20 return vres;21 }22 23 bool intvalcomp(Interval a, Interval b){24 if(a.start == b.start)25 return a.end < b.end;26 else27 return a.start < b.start;28 }
现在有了这个Merge好了的不相交区间序列,怎么进行插入呢?Insert Interval条件太多,每一个大小等号比较,每一个小下标就能让人栽跟斗,因此它也是我目前最讨厌的题目,没有之一。
一开始尝试这种思路:
“新序列按照start排好序(start肯定是各不相同的),第一步我们先用二分找出有交集的序列片段的开始,这一点很像,然后再往后处理。”
脑子不清楚憋了一下午,恶心的我两天不能刷Leetcode,如果真要写出来的话,就老老实实下面这样,效率不一定差,因为看题目反正是不想要你改变输入参数,横竖都得遍历一遍来拷贝。挺有意思的是,晚上我看到了Google Campus的youku视频,讲述的就是一个倒霉孩子花了30min写二分Insert Interval的反例。。。
1 vectorinsert(vector &intervals, Interval newInterval) { 2 vector rs; 3 int i = 0; 4 while(i < intervals.size() && intervals[i].end < newInterval.start){ //找到第一个起点 5 rs.push_back(intervals[i++]); 6 } 7 if(i == intervals.size()){ //为空或过了结尾点 8 rs.push_back(newInterval); 9 return rs;10 }11 12 newInterval.start = min(newInterval.start, intervals[i].start);13 while(i < intervals.size() && intervals[i].start <= newInterval.end){ //找到结束点 14 newInterval.end = max(newInterval.end, intervals[i++].end);15 }16 rs.push_back(newInterval);17 18 while(i < intervals.size()){19 rs.push_back(intervals[i++]);20 }21 return rs;22 }